Telegram Group & Telegram Channel
🧩 Почему важно устранять первопричину искажения десятичных данных, а не ограничиваться их очисткой

В задачах машинного обучения и аналитики недостаточно просто очищать обучающие или производственные данные от некорректных значений. Особенно это касается десятичных чисел, поскольку их искажение может происходить незаметно, но приводить к существенному снижению качества моделей и принятию ошибочных бизнес-решений.

📉 Типовой сценарий:
Обнаруживается, что значения теряют дробную часть — например, «12,5» становится «125». После этого данные очищаются, модель переобучается, однако через некоторое время проблема возникает снова.

🎯 Рекомендованный подход — поиск и устранение первоисточника:

Проверить, каким образом данные изначально собираются (веб-формы, скрипты импорта и пр.).
Проанализировать промежуточные этапы обработки: возможно, ошибка возникает при парсинге CSV-файлов, при приведении типов или из-за некорректного округления.
Ознакомиться с системными журналами и логами: не исключено, что ошибка началась после обновления компонентов, изменения конфигурации или внедрения новых версий ПО.

🛠 После выявления причины необходимо внести корректировки на уровне источника данных:
Обеспечить сохранение числовой точности.
Внедрить строгие проверки форматов и типов.
Настроить автоматические уведомления о появлении подозрительных или выходящих за допустимые границы значений.

⚠️ Важно учитывать, что подобные ошибки могут проявляться непостоянно, а лишь в отдельных случаях. Именно поэтому требуется постоянный мониторинг распределения значений и логов.

Библиотека собеса по Data Science



tg-me.com/ds_interview_lib/969
Create:
Last Update:

🧩 Почему важно устранять первопричину искажения десятичных данных, а не ограничиваться их очисткой

В задачах машинного обучения и аналитики недостаточно просто очищать обучающие или производственные данные от некорректных значений. Особенно это касается десятичных чисел, поскольку их искажение может происходить незаметно, но приводить к существенному снижению качества моделей и принятию ошибочных бизнес-решений.

📉 Типовой сценарий:
Обнаруживается, что значения теряют дробную часть — например, «12,5» становится «125». После этого данные очищаются, модель переобучается, однако через некоторое время проблема возникает снова.

🎯 Рекомендованный подход — поиск и устранение первоисточника:

Проверить, каким образом данные изначально собираются (веб-формы, скрипты импорта и пр.).
Проанализировать промежуточные этапы обработки: возможно, ошибка возникает при парсинге CSV-файлов, при приведении типов или из-за некорректного округления.
Ознакомиться с системными журналами и логами: не исключено, что ошибка началась после обновления компонентов, изменения конфигурации или внедрения новых версий ПО.

🛠 После выявления причины необходимо внести корректировки на уровне источника данных:
Обеспечить сохранение числовой точности.
Внедрить строгие проверки форматов и типов.
Настроить автоматические уведомления о появлении подозрительных или выходящих за допустимые границы значений.

⚠️ Важно учитывать, что подобные ошибки могут проявляться непостоянно, а лишь в отдельных случаях. Именно поэтому требуется постоянный мониторинг распределения значений и логов.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/969

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Dump Scam in Leaked Telegram Chat

A leaked Telegram discussion by 50 so-called crypto influencers has exposed the extraordinary steps they take in order to profit on the back off unsuspecting defi investors. According to a leaked screenshot of the chat, an elaborate plan to defraud defi investors using the worthless “$Few” tokens had been hatched. $Few tokens would be airdropped to some of the influencers who in turn promoted these to unsuspecting followers on Twitter.

Библиотека собеса по Data Science | вопросы с собеседований from no


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA