🧩Почему важно устранять первопричину искажения десятичных данных, а не ограничиваться их очисткой
В задачах машинного обучения и аналитики недостаточно просто очищать обучающие или производственные данные от некорректных значений. Особенно это касается десятичных чисел, поскольку их искажение может происходить незаметно, но приводить к существенному снижению качества моделей и принятию ошибочных бизнес-решений.
📉Типовой сценарий: Обнаруживается, что значения теряют дробную часть — например, «12,5» становится «125». После этого данные очищаются, модель переобучается, однако через некоторое время проблема возникает снова.
🎯Рекомендованный подход — поиск и устранение первоисточника:
— Проверить, каким образом данные изначально собираются (веб-формы, скрипты импорта и пр.). — Проанализировать промежуточные этапы обработки: возможно, ошибка возникает при парсинге CSV-файлов, при приведении типов или из-за некорректного округления. — Ознакомиться с системными журналами и логами: не исключено, что ошибка началась после обновления компонентов, изменения конфигурации или внедрения новых версий ПО.
🛠После выявления причины необходимо внести корректировки на уровне источника данных: — Обеспечить сохранение числовой точности. — Внедрить строгие проверки форматов и типов. — Настроить автоматические уведомления о появлении подозрительных или выходящих за допустимые границы значений.
⚠️ Важно учитывать, что подобные ошибки могут проявляться непостоянно, а лишь в отдельных случаях. Именно поэтому требуется постоянный мониторинг распределения значений и логов.
🧩Почему важно устранять первопричину искажения десятичных данных, а не ограничиваться их очисткой
В задачах машинного обучения и аналитики недостаточно просто очищать обучающие или производственные данные от некорректных значений. Особенно это касается десятичных чисел, поскольку их искажение может происходить незаметно, но приводить к существенному снижению качества моделей и принятию ошибочных бизнес-решений.
📉Типовой сценарий: Обнаруживается, что значения теряют дробную часть — например, «12,5» становится «125». После этого данные очищаются, модель переобучается, однако через некоторое время проблема возникает снова.
🎯Рекомендованный подход — поиск и устранение первоисточника:
— Проверить, каким образом данные изначально собираются (веб-формы, скрипты импорта и пр.). — Проанализировать промежуточные этапы обработки: возможно, ошибка возникает при парсинге CSV-файлов, при приведении типов или из-за некорректного округления. — Ознакомиться с системными журналами и логами: не исключено, что ошибка началась после обновления компонентов, изменения конфигурации или внедрения новых версий ПО.
🛠После выявления причины необходимо внести корректировки на уровне источника данных: — Обеспечить сохранение числовой точности. — Внедрить строгие проверки форматов и типов. — Настроить автоматические уведомления о появлении подозрительных или выходящих за допустимые границы значений.
⚠️ Важно учитывать, что подобные ошибки могут проявляться непостоянно, а лишь в отдельных случаях. Именно поэтому требуется постоянный мониторинг распределения значений и логов.
A leaked Telegram discussion by 50 so-called crypto influencers has exposed the extraordinary steps they take in order to profit on the back off unsuspecting defi investors. According to a leaked screenshot of the chat, an elaborate plan to defraud defi investors using the worthless “$Few” tokens had been hatched. $Few tokens would be airdropped to some of the influencers who in turn promoted these to unsuspecting followers on Twitter.
Библиотека собеса по Data Science | вопросы с собеседований from no